Selected formulas

Kinematics	
velocity	$\vec{v}=\frac{\Delta \vec{r}}{\Delta t}$
acceleration	$\vec{a}=\frac{\Delta \vec{v}}{\Delta t}$
angular velocity	$\omega=\frac{\Delta \alpha}{\Delta t}$
velocity in circular motion	$v=\omega \cdot r$
Centripetal acceleration	$a_{c p}=\frac{v^{2}}{r}=\omega^{2} \cdot r$
Angular acceleration	$\varepsilon=\frac{\Delta \omega}{\Delta t}$
Transverse acceleration	$a_{t r}=\varepsilon \cdot r$
velocity in accelerated movement in a straight line	$v=v_{0}+a \cdot t$
distance in accelerated movement in a straight line	$s=v_{0} \cdot t+\frac{1}{2} a \cdot t^{2}$

Oscillations and Waves	
simple harmonic motion	$x(t)=A \cdot \sin (\omega t+\varphi)$ $v(t)=A \cdot \omega \cdot \cos (\omega t+\varphi)$ $a(t)=-A \cdot \omega^{2} \cdot \sin (\omega t+\varphi)$
period of oscillations (mass on a spring and a simple pendulum)	$T=2 \pi \sqrt{\frac{m}{k}} ; T=2 \pi \sqrt{\frac{l}{g}}$
frequency and wavelength	$f=\frac{1}{T} ; \lambda=v \cdot T$
wave refraction	$\frac{\sin \left(\theta_{1}\right)}{\sin \left(\theta_{2}\right)}=\frac{v_{1}}{v_{2}}=\frac{n_{2}}{n_{1}}$
diffraction grating	$n \cdot \lambda=d \cdot \sin (\alpha)$
Doppler effect	$f=f_{0} \frac{v_{\text {sound }} \pm v_{\text {obs }}}{v_{\text {sound }} \mp v_{\text {source }}}$

Contemporary Physics	
mass-energy equivalence	$E=m \cdot c^{2}=\frac{m_{0} \cdot c^{2}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}$
photon energy	$E=h \cdot f=\frac{h \cdot c}{\lambda}$
photoelectric effect	$h \cdot f=W+E_{k \max }$
de Broglie wavelength	$\lambda=\frac{h}{p}$
relativistic momentum	$m_{0} \cdot v$ $\sqrt{1-\frac{v^{2}}{c^{2}}}$
radioactive decay	$N=N_{0} \cdot \exp (-\lambda \cdot t)$ $=N_{0} \cdot 2^{\frac{t}{T_{1 / 2}}}$
energy levels of hydrogen atom	$E_{n}=\frac{-13.6 \mathrm{eV}}{n^{2}}$ $v=H \cdot r$
Hubble's law	

Dynamics	
momentum	$\vec{p}=m \cdot \vec{v}$
II Newton's law	
moment of force	$\vec{F}=m \cdot \vec{a}=\frac{\Delta \vec{p}}{\Delta t}$
moment of inertia	$I=\sum_{i=1}^{n} m_{i} \cdot r^{2}$
angular momentum of a material point	$L=m \cdot v \cdot r \cdot \sin \Varangle(\vec{r} ; \vec{v})$
angular momentum of a rigid body	$L=I \cdot \omega$
II Newton's Law for angular motion	$\frac{\Delta L}{\Delta t}=M ; \varepsilon=\frac{M}{I}$
work	$W=F \cdot \Delta x \cdot \cos \Varangle(\vec{F} ; \Delta \vec{x})$
power	$P=\frac{W}{\Delta t}$
translational kinetic energy	$E_{\text {kin }}=\frac{1}{2} m \cdot v^{2}$
rotational kinetic energy of a rigid body	$E_{k i n}=\frac{1}{2} I \cdot \omega^{2}$

Gravity, Elasticity, and Friction	
Newton's law of universal gravitation	$F_{g}=G \frac{m_{1} \cdot m_{2}}{r^{2}}$
gravitational field intensity	$\vec{\gamma}=\frac{\overrightarrow{F_{g}}}{m}$
gravitational potential energy	$E_{p}=-G \frac{m_{1} \cdot m_{2}}{r}$
changes in gravitational potential energy of an object near the surface of the Earh	$\Delta E_{p}=m \cdot g \cdot \Delta h$
the first and second cosmic velocities for Earth	$v_{I}=\sqrt{\frac{G \cdot M_{E}}{R_{E}}} ; v_{I I}=\sqrt{\frac{2 \cdot G \cdot M_{E}}{R_{E}}}$
Kepler's third law	$\frac{T_{1}^{2}}{R_{1}^{3}}=\frac{T_{2}^{2}}{R_{2}^{3}}=\operatorname{const}$
spring force (Hooke's law)	$\vec{F}_{S}=-k \cdot \vec{x}$
elastic potential energy	$E_{p o t}=\frac{1}{2} k \cdot x^{2}$
kinetic friction	$F_{k f}=\mu_{k} \cdot F_{N}$
static friction	$F_{S f} \leq \mu_{S} \cdot F_{N}$

	Optics
critical angle	$\sin \left(\theta_{c}\right)=\frac{n_{2}}{n_{1}}$
Brewster's angle	$\operatorname{tg}\left(\theta_{B}\right)=\frac{n_{2}}{n_{1}}$
thin lens equation, mirror equation	$\frac{1}{x}+\frac{1}{y}=\frac{1}{f}$
lensmaker's equation (thin lens approximation)	$\frac{1}{f}=\left(\frac{n_{\text {lens }}}{n_{0}}-1\right)\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)$
spherical mirrors	$f=\frac{R}{2}$

Thermodynamics	
density	$\rho=\frac{m}{V}$
pressure	$P=\frac{F}{S}$
difference in hydrostatic pressure	$\Delta P=\rho \cdot g \cdot h$
buoyant force	$F_{B}=\rho_{F} \cdot V \cdot g=m_{F} \cdot g$
first law of thermodynamics	$\Delta U=Q-\frac{Q}{m \cdot \Delta T}$
work done by a gas at a constant pressure	$C=\frac{Q}{n \cdot \Delta T}$
specific heat	$L=\frac{Q}{m}$
molar specific heat latent heat the average translational kinetic energy of molecules of an ideal gas ideal gas law (equation of state for an ideal gas) heat engine efficiency $E_{k}=\frac{3}{2} k_{B} \cdot T$ efficiency of Carnot engine $e=\frac{W}{Q_{H}}=\frac{Q_{H}-Q_{L}}{Q_{H}}$	

Magnetic Field	
force on an electric charge q moving in a magnetic field B	$F=q \cdot v \cdot B \cdot \sin \Varangle(\vec{v} ; \vec{B})$
force on a wire carrying a current I with length l in a uniform magnetic field B	$F=I \cdot l \cdot B \cdot \sin \Varangle(\vec{l} ; \vec{B})$
magnetic field B in free space due to current in a long straight wire	$B=\frac{\mu_{0} \cdot I}{2 \pi \cdot r}$
magnetic field at the centre of a current loop	$B=\frac{\mu_{0} \cdot \mu_{r} \cdot I}{2 \cdot r}$
magnetic field inside a solenoid	$B=\frac{\mu_{0} \cdot \mu_{r} \cdot N \cdot I}{l}$
magnetic flux	$\Phi_{B}=B \cdot A \cdot \cos \Varangle(\vec{B} ; \vec{A})$
electromotive force (Faraday's law of induction)	$\mathcal{E}=-\frac{\Delta \Phi_{B}}{\Delta t}$
electromotive force of self- induction	$\frac{\Delta I}{\Delta t}$
alternating current - effective or rms (root-mean-square) values of current and voltage	$I_{r m s}=\frac{I_{0}}{\sqrt{2}} ; V_{r m s}=\frac{V_{0}}{\sqrt{2}}$

Electric Current	
electric current (definition)	$I=\frac{\Delta Q}{\Delta t}$
electric power	$P=V \cdot I=\frac{V^{2}}{R}=I^{2} \cdot R$
resistance and resistivity	$R=\rho \cdot \frac{l}{A}$
Ohm's Law	$I=\frac{V}{R}$
terminal voltage of an electric cell	$V=\mathcal{E}-I \cdot r$
equivalent resistance (resistors in series and in parallel)	$R_{e q}=\sum_{i=1}^{n} R_{i}$
$R_{e q}=\sum_{i=1}^{n} \frac{1}{R_{i}}$	
equivalent capacitance (capacitors in series and in parallel)	$\frac{1}{C_{e q}}=\sum_{i=1}^{n} \frac{1}{C_{i}}$

Electrostatics	
Coulomb's Law	$F=k \frac{q_{1} \cdot q_{2}}{r^{2}}$
electric field	$\vec{E}=\frac{\vec{F}}{q}$
voltage	$V=\frac{W}{q}$
relationship between voltage and uniform electric field	$V=E \cdot d$
capacitance; capacitance of a parallel plate capacitor	$C=\frac{\varepsilon \cdot A}{d}=\frac{\varepsilon_{0} \cdot \varepsilon_{r} \cdot A}{d}$
energy stored on a capacitor	$W=\frac{1}{2} q \cdot V=\frac{1}{2} C \cdot V^{2}$

